Squares in Fork Arrow Logic
نویسندگان
چکیده
In this paper we show that the class of fork squares has a complete orthodox axiomatization in fork arrow logic (FAL). This result may be seen as an orthodox counterpart of Venema’s non-orthodox axiomatization for the class of squares in arrow logic. FAL is the modal logic of fork algebras (FAs) just as arrow logic is the modal logic of relation algebras (RAs). FAs extend RAs by a binary fork operator and are axiomatized by adding three equations to RAs equational axiomatization. A proper FA is an algebra of relations where the fork is induced by an injective operation coding pair formation. In contrast to RAs, FAs are representable by proper ones and their equational theory has the expressive power of full first-order logic. A square semantics (the set of arrows is U ×U for some set U) for arrow logic was defined by Y. Venema. Due to the negative results about the finite axiomatizability of representable RAs, Venema provided a non-orthodox finite axiomatization for arrow logic by adding a new rule governing the applications of a difference operator. We address here the question of extending the type of relational structures to define orthodox axiomatizations for the class of squares. Given the connections between this problem and the finitization problem addressed by I. Németi, we suspect that this cannot be done by using only logical operations. The modal version of the FA equations provides an orthodox axiomatization for FAL which is complete in view of the representability of FAs. Here we review this result and carry it further to prove that this orthodox axiomatization for FAL also axiomatizes the class of fork squares.
منابع مشابه
The "Game about Squares" is NP-hard
In the “Game about Squares” the task is to push unit squares on an integer lattice onto corresponding dots. A square can only be moved into one given direction. When a square is pushed onto a lattice point with an arrow the direction of the square adopts the direction of the arrow. Moreover, squares can push other squares. In this paper we study the decision problem, whether all squares can be ...
متن کاملArrow Update Synthesis
In this contribution we present arbitrary arrow update model logic (AAUML). This is a dynamic epistemic logic or update logic. In update logics, static/basic modalities are interpreted on a given relational model whereas dynamic/update modalities induce transformations (updates) of relational models. In AAUML the update modalities formalize the execution of arrow update models, and there is als...
متن کاملThe undecidability of arbitrary arrow update logic
Arbitrary Arrow Update Logic is a dynamic modal logic that uses an arbitrary arrow update modality to quantify over all arrow updates. Some properties of this logic have already been established, but until now it remained an open question whether the logic’s satisfiability problem is decidable. Here, we show that the satisfiability problem of Arbitrary Arrow Update Logic is co-RE hard, and ther...
متن کاملFork Algebras as a Sufficiently Rich Universal Institution
Algebraization of computational logics in the theory of fork algebras has been a research topic for a while. This research allowed us to interpret classical first-order logic, several propositional monomodal logics, propositional and first-order dynamic logic, and propositional and first-order linear temporal logic in the theory of fork algebras. In this paper we formalize these interpretabilit...
متن کاملArrow Update Logic
We present Arrow Update Logic, a theory of epistemic access elimination that can be used to reason about multi-agent belief change. While the belief-changing “arrow updates” of Arrow Update Logic can be transformed into equivalent belief-changing “action models” from the popular Dynamic Epistemic Logic approach, we prove that arrow updates are sometimes exponentially more succinct than action m...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Philosophical Logic
دوره 32 شماره
صفحات -
تاریخ انتشار 2003